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In this paper, we perform an analytic solution of a vibro-impact system including two single-

degree-of-freedom vibration systems under random excitations by using the classical 

Fokker-Planck-Kolmogorov (FPK) method. The numerical solution of the vibro-impact 

systems is also performed based on the inverse discrete Fourier transform (IDFT) and the 

Runge-Kutta method. The mean square responses and the mean square responses ratio are 

calculated to study the deviation between the analytical solution and the numerical solution. 

Finally, the influence of clearance on the responses of the systems, such as mean square 

responses, contact ratio and impact force level, is discussed. 

 

1. Introduction 

Vibro-impact systems i.e. vibrating systems including 

impact interactions widely exist in mechanical engineering; 

ocean engineering and civil engineering[1-3]. Various 

dynamical phenomena are observed in the vibro-impact 

systems. For example, under deterministic periodically 

loadings, the stability, bifurcation and chaos of the vibro-

impact system have been explored by the Poincare map [4-

7]. In practice, engineering structures are often subjected to 

random loadings, e.g., wind load, earthquakes, ocean waves 

and random disturbance or noise. Due to the impact 

interactions and the random loadings, the vibro-impact 

systems are always non-smooth and nonlinear, which 

induces complicated system responses and imposes great 

challenges for proper characterization of the systems. 

Therefore, it is important to investigate impact interactions 

of the vibro-impact system under random loadings. 

Various modeling techniques have been developed to 

study impact interactions. One widely used model is the 

classical impact model, which assumes that the impact 

process is instantaneous and uses the coefficient of 

restitution to modify the velocities of the colliding bodies 

after impact base on the principle of momentum [8]. Another 
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model to describe the impact process is the Hertzian contact 

model [9], which assumes the contact force between two 

elastic bodies to be proportional to the 3/2 power of the 

relative displacement between them. However, the non-

linear effects exists in both models and may lead to 

difficulties in solving the Fokker-Planck-Kolmogorov (FPK) 

equation of the vibro-impact systems, so that the exact 

solution for the corresponding FPK equation is known only 

for very few cases [10-16]. Therefore, approximate methods 

have been developed and employed to solve the FPK 

equation for obtaining the approximate probability density 

functions (PDFs) of the responses of the non-smooth and 

non-linear systems. By transforming the non-smooth 

systems to corresponding smooth systems, the responses of 

vibro-impact systems can be obtained through traditional 

asymptotic approaches [17].  

Based on the stochastic averaging method, the 

approximate stationary solutions for both single-degree-of-

freedom and multi-degree-of-freedom systems have been 

derived [18,19]. Multiple scales method has been adopted to 

obtain the PDFs of the responses of vibro-impact systems 

under different complex excitations such as external and 

parametric excitations, combined harmonic and random 

excitations [20,21]. In order to obtain the PDFs of the 
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responses of some new strong-nonlinearity vibro-impact 

systems, the exponential–polynomial closure (EPC) method 

have been explored to solve the FPK equation of these 

systems [22-24]. 

As mentioned, most work deal with the stationary 

solutions of single-degree-of-freedom and multi-degree-of-

freedom systems. In these work, the vibro-impact systems 

consist of moving oscillators and stationary barriers. 

However, in practice, impact between two vibration systems 

occurs frequently. For example, there are a great number of 

studies on the pounding force response spectrum between 

adjacent structures under earthquake excitation [25-29]. 

However, there are quite few studies on the stationary 

solutions of this composite vibro-impact system. The exact 

stationary solutions of the random response of two special 

vibration systems with impact interactions are obtained [30]. 

Work [30] provides useful insights into the impact 

interactions on the two vibration systems; however, it is lack   

of numerical validation. In this paper, a vibro-impact system 

with two single-degree-of-freedom vibration systems is 

considered. The contact between the two vibration systems 

is modeled by the Hertz law. The analytical solution of the 

vibro-impact system under random excitation is performed, 

and the numerical solution of the vibro-impact system is also 

presented based on the IDFT [31]. By comparing the PDFs 

of the displacement and velocity responses of the vibro-

impact systems calculated by the two methods, the limitation 

of the analytical solutions is examined, and the dynamic 

characteristics of the systems, such as mean square 

responses, contact ratio and impact force level, are also 

discussed. 

 
Figure 1 .Two single-degree-of-freedom vibration systems. 

2. System Description and Theoretical Analysis 

Consider two single-degree-of-freedom vibration 

systems with a clearance d placed between these two 

systems, as shown in Figure 1. Each system has its own mass, 

damping coefficient and spring constant m, c, k, and is forced 

by independent random excitation. The motion equations of 

the systems can be written as: 

 

where �̈�𝑖 , �̇�𝑖 , 𝑥𝑖 , 𝑖 = 1,2 denote the accelerations, velocities 

and displacements of each system, respectively; 𝜁𝑖 =
𝑐𝑖

2√𝑚𝑖𝑘𝑖
  

denotes the constant damping ratios; 𝜔𝑖 = √𝑘𝑖/𝑚𝑖  denotes 

the natural frequencies. 𝜂 is the contact stiffness, which 

depends on the elastic properties and geometries of the two 

contacting bodies [9]. 𝑔(𝑥1, 𝑥2)  denotes the contact force 

based on the Hertz law, which can be expressed as: 

𝑔(𝑥1, 𝑥2) = {
(𝑥1 − 𝑥2 − 𝑑)

3/2      𝑥1 − 𝑥2 − 𝑑 ≥ 0
0                                𝑒𝑙𝑠𝑒

 (2) 

For simplicity, both of the random excitations 𝜉𝑖(𝑡) are 

assumed to be the independent stationary white Gaussian 

processes with zero mean. The mean and correlation function 

of 𝜉𝑖(𝑡) are given as below: 

{

𝐸[𝜉𝑖(𝑡)] = 0          𝑖 = 1,2

𝐸[𝜉𝑖(𝑡)𝜉𝑖(𝑡 + 𝜏)] = 2𝜋𝑆𝑖𝛿(𝜏)

𝐸[𝜉𝑖(𝑡)𝜉𝑗(𝑡 + 𝜏)] = 0     𝑖 ≠ 𝑗

 (3) 

where 𝐸 denotes the expectation function, 𝑆𝑖 denotes the 

spectral densities of 𝜉𝑖(𝑡), and 𝛿(𝜏) is the Dirac delta 

function. 

Then, the joint probability density function (JPDF) 

𝑝(𝑥1, 𝑥2, 𝑣1, 𝑣2) of the random responses of these systems 

will satisfy the stationary Fokker-Planck partial differential 

equation [10] , which is given as: 

−𝑣1
𝜕𝑝

𝜕𝑥1
+

𝜕

𝜕𝑣1
[(2𝜁1𝜔1𝑣1+𝜔1

2𝑥1 +

𝜂𝑔(𝑥1, 𝑥2))𝑝] + 𝜋𝑆1
𝜕2𝑝

𝜕𝑣1
2 − 𝑣2

𝜕𝑝

𝜕𝑥2
+

𝜕

𝜕𝑣2
[(2𝜁2𝜔2𝑣2+𝜔2

2𝑥2 − 𝜂𝑔(𝑥1, 𝑥2))𝑝] +

𝜋𝑆2
𝜕2𝑝

𝜕𝑣2
2 = 0  

(4) 

Eq. (4) can be rewritten as: 

(2𝜁1𝜔1
𝜕

𝜕𝑣1
−

𝜕

𝜕𝑥1
) (𝑣1𝑝 +

𝜋𝑆1

2𝜁1𝜔1
∙
𝜕𝑝

𝜕𝑣1
) +

𝜕

𝜕𝑣1
[(𝜔1

2𝑥1 + 𝜂𝑔(𝑥1, 𝑥2))𝑝 +
𝜋𝑆1

2𝜁1𝜔1
∙
𝜕𝑝

𝜕𝑥1
] +

(2𝜁2𝜔2
𝜕

𝜕𝑣2
−

𝜕

𝜕𝑥2
) (𝑣2𝑝 +

𝜋𝑆2

2𝜁2𝜔2
∙
𝜕𝑝

𝜕𝑣2
) +

𝜕

𝜕𝑣2
[(𝜔2

2𝑥2 − 𝜂𝑔(𝑥1, 𝑥2))𝑝 +
𝜋𝑆2

2𝜁2𝜔2
∙
𝜕𝑝

𝜕𝑥2
] = 0  

(5) 

One solution of Eq. (5) can be obtained if: 

{
 
 
 
 

 
 
 
 𝑣1𝑝 +

𝜋𝑆1
2𝜁1𝜔1

∙
𝜕𝑝

𝜕𝑣1
= 0

𝑣2𝑝 +
𝜋𝑆2
2𝜁2𝜔2

∙
𝜕𝑝

𝜕𝑣2
= 0

(𝜔1
2𝑥1 + 𝜂𝑔(𝑥1, 𝑥2))𝑝 +

𝜋𝑆1
2𝜁1𝜔1

∙
𝜕𝑝

𝜕𝑥1
= 0

(𝜔2
2𝑥2 − 𝜂𝑔(𝑥1, 𝑥2))𝑝 +

𝜋𝑆2
2𝜁2𝜔2

∙
𝜕𝑝

𝜕𝑥2
= 0

 (6) 

In order to solve Eqs.(6), we assume that (1) the 

displacements and velocities are statistically independent, 

which means 

𝑝(𝑥1, 𝑥2, 𝑣1, 𝑣2) = 𝑝(𝑥1, 𝑥2)𝑝(𝑣1)𝑝(𝑣2) (7) 

{
�̈�1 + 2𝜁1𝜔1�̇�1 +𝜔1

2𝑥1 + 𝜂 ∙ 𝑔(𝑥1, 𝑥2) = 𝜉1(𝑡)

�̈�2 + 2𝜁2𝜔2�̇�2 + 𝜔2
2𝑥2 − 𝜂 ∙ 𝑔(𝑥1, 𝑥2) = 𝜉2(𝑡)

 (1) 
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From the first and the second equations of Eqs.(6), it is 

found that the velocity distributions of 𝑣1 and 𝑣2 are still 

Gaussian, Thus, the expressions of 𝑝(𝑣1) and 𝑝(𝑣2) can be 

easily obtained. It should be mentioned that the joint 

probability density function 𝑝(𝑥1, 𝑥2) cannot be separated 

since 𝑥1 and 𝑥2 are coupled due to the impact interactions, 

which is governed by 𝑔(𝑥1, 𝑥2). In order to analytically solve 

the joint probability density function 𝑝(𝑥1, 𝑥2), we also 

assume (2) the exciting strength ratio is equal to the damping 

ratio of the two systems 

𝑆1
𝑆2
=
𝜁1𝜔1
𝜁2𝜔2

 (8) 

Let 𝑆 = 𝑆1/𝑆2, 𝜁 = 𝜁1/𝜁2, 𝜔 = 𝜔1/𝜔2, we get a 

translational form of the Eq.(8): 

𝑆

𝜁 ∙ 𝜔
= 1 (9) 

Then the solution of the joint probability density function 

𝑝(𝑥1, 𝑥2, 𝑣1, 𝑣2) can be expressed as: 

𝑝(𝑥1, 𝑥2, 𝑣1, 𝑣2) =

{
 
 

 
 𝐶𝑒𝑥𝑝 [−

𝑣1
2

2𝜎𝑣1
2 −

𝑣2
2

2𝜎𝑣2
2 −

𝑥1
2

2𝜎𝑥1
2 −

𝑥2
2

2𝜎𝑥2
2 −

2𝜂(𝑥1−𝑥2−𝑑)
3
2

5𝜔1
2𝜎𝑥1

2 ]

  
𝑤ℎ𝑒𝑛      𝑥1 − 𝑥2 − 𝑑 ≥ 0

𝐶𝑒𝑥𝑝 (−
𝑣1
2

2𝜎𝑣1
2 −

𝑣2
2

2𝜎𝑣2
2 −

𝑥1
2

2𝜎𝑥1
2 −

𝑥2
2

2𝜎𝑥2
2 )                𝑒𝑙𝑠𝑒

  
 

(10) 

where 𝜎𝑥𝑖
2 = 𝜋𝑆𝑖/2𝜁𝑖𝜔𝑖

3 representing the mean square 

response of the 𝑥𝑖 of the corresponding linear systems, 𝜎𝑣𝑖
2 =

𝜋𝑆𝑖/2𝜁𝑖𝜔𝑖   representing the mean square response of the 𝑣𝑖. 
𝐶 is the integration constant and can be obtained by 

∫ ∫ ∫ ∫ 𝑝(𝑥1, 𝑥2, 𝑣1, 𝑣2)𝑑𝑥1𝑑𝑥2𝑑𝑣1𝑑𝑣2

∞

−∞

∞

−∞

∞

−∞

∞

−∞

= 1 

(11) 

The joint distribution density function and the marginal 

probability density functions can be obtained as: 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑝(𝑥1, 𝑥2) =

{
 
 

 
 �̃�𝑒𝑥𝑝 [−

𝑥1
2

2𝜎𝑥1
2 −

𝑥2
2

2𝜎𝑥2
2 −

2𝜂(𝑥1−𝑥2−𝑑)
3
2

5𝜔1
2𝜎𝑥1

2 ]

  
𝑤ℎ𝑒𝑛      𝑥1 − 𝑥2 − 𝑑 ≥ 0

�̃�𝑒𝑥𝑝 [−
𝑥1
2

2𝜎𝑥1
2 −

𝑥2
2

2𝜎𝑥2
2 ]          𝑒𝑙𝑠𝑒

𝑝(𝑥1) = ∫ 𝑝(𝑥1, 𝑥2)𝑑𝑥2
∞

−∞

𝑝(𝑥2) = ∫ 𝑝(𝑥1, 𝑥2)𝑑𝑥1
∞

−∞

𝑝(𝑣1) =
1

𝜎𝑣1√2𝜋
𝑒𝑥𝑝 (−

𝑣1
2

2𝜎𝑣1
2 )

𝑝(𝑣2) =
1

𝜎𝑣2√2𝜋
𝑒𝑥𝑝 (−

𝑣2
2

2𝜎𝑣2
2 )

  
(12

) 

where �̃� is the integration constant and can be obtained by 

∫ ∫ 𝑝(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

∞

−∞

∞

−∞

= 1 (13) 

It should be noted that the closed form expression can be 

obtained only under the assumptions of (1) (displacements 

and velocities are statistically independent) and (2) (the 

exciting strength ratio is equal to the damping and frequency 

ratio of two systems). Due to the assumptions, it has certain 

limitations when applied to explain the impact interactions 

on the responses of the vibro-impact system. However, it still 

provides useful insights into the impact interaction between 

the two vibration systems [30]. In this study, we will find out 

these limitations and the applicability of the analytical 

solution. 

3. Numerical Analysis 

3.1 The Time-domain Simulation 

For simplicity, we use the bounded noise instead of the 

white noise Gaussian processes [31]. According to the work 

by Shinozuka [31], each physical realization of 𝜉(𝑡) can be 

approximated by the following triangle series expansion: 

{
 
 

 
 𝜉(𝑡) ≈ ∑𝐴 cos(2𝜋𝑓𝑘𝑡 + 𝜙𝑘)

𝑁

𝑘=1

          𝑁 ⟶ ∞

𝐴 = √2𝑆𝑓Δ𝑓;   𝑓𝑘 ∈ [𝑓𝑎, 𝑓𝑏];   Δ𝑓 =
𝑓𝑏 − 𝑓𝑎
𝑁

{𝜙𝑘|𝑘 = 1,2, … , 𝑁} ∼ 𝑈[0,2𝜋]

 (14) 

where 𝑆𝑓 is the one-sided power spectrum density(PSD) of 

the preset bounded noise, 𝑓𝑘 are independent and 

nonnegative frequency over the interval [𝑓𝑎, 𝑓𝑏], Δ𝑓 is the 

frequency increment and 𝑁 is a fixed positive integer, 

random phase {𝜙𝑘|𝑘 = 1,2, … , 𝑁} are uniformly distributed 

over the interval [0,2𝜋]. Numerical results show that the 

physical realization generated by Eqs.(14) is almost 

stationary and ergodic when positive integer 𝑁 is large 

enough[31]. To generate an ergodic physical realization, 𝑁 

is set to be large enough, say 50000. In general, we set 𝑓𝑎 =
0, 𝑓𝑏 = 500.  

Assuming �̇�𝑖 = 𝑣𝑖, Eqs. (1) can be replaced by the 

following equations:  

{
 

 
�̇�1 = 𝑣1

�̇�1 = −2𝜁1𝜔1�̇�1 − 𝜔1
2𝑥1 − 𝜂 ∙ 𝑔(𝑥1, 𝑥2)+𝜉1(𝑡)

�̇�2 = 𝑣2
�̇�2 = −2𝜁2𝜔2�̇�2 −𝜔2

2𝑥2 + 𝜂 ∙ 𝑔(𝑥1, 𝑥2)+𝜉2(𝑡)

 (15) 

By using the simulations given in Eqs.(14), Eqs.(15) can 

be easily solved through numerical algorithms. To improve 

the computation precision, we choose the fourth-order 

Runge–Kutta algorithm with time step Δ𝑡 = 0.001𝑠 , and for 

the purpose for making each system be stable ,the total time 

𝑡 is set to be 100s, then we can get a set of numerical solution 

(𝑥1, 𝑥2, 𝑣1, 𝑣2) with 4 × 106  samples to provide a simulated 

PDF solution. 

According to the theoretical analysis, under the 

assumptions (2), i.e. 
𝑆1

𝑆2
=

𝜁1𝜔1

𝜁2𝜔2
, we can get the analytical 

solution of Eqs.(12). In order to exam the effectiveness of the 

numerical solution, we firstly set a group of parameters 

which satisfy Eq.(8) e.g. 𝜔1 = 32𝜋, 𝜔2 = 2𝜋, 𝜁1 = 𝜁2 =

0.1, 𝑆1 = 16, 𝑆2 = 1, 𝜂 = 10000, 𝑑 = 0.05. Figure 2 shows 

a comparison of the marginal PDFs of displacements and 
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velocities between the numerical and the analytical 

solutions. 

The blue curve shows the PDFs calculated by numerical 

method; the red dash line shows the PDFs calculated by 

analytical method; the green point curve shows the absolute 

errors of the PDFs. As we can see from Figure 2, the PDFs 

of displacement and velocity of System 1 obtained from the 

two methods agree well as seen by the almost zero error; 

However, obvious discrepancies can be seen from Figure 

2(c) and (d) for System 2. When 𝑁 is set to be 50000 in the 

simulation, there is a little fluctuations in the System 2. This 

phenomenon can be still observed when a much larger 

number of 𝑁 is used. Nevertheless, the simulation of this 

study is acceptable on obtaining the approximate PDFs of the 

displacement and velocity responses of the system. 

 

Figure 2. Comparisons of the PDFs: (a) displacement and (b) 

velocity of System 1; (c)displacement and (d)velocity of System 

2. 

3.2 The comparisons of the PDFs by using two methods 

For the case In Figure 2, we have, 𝜔 =
𝜔1

𝜔2
= 16, 𝜁 =

𝜁1

𝜁2
= 1, 𝑆 =

𝑆1

𝑆2
= 16, then 

𝑆

𝜁∙𝜔
= 1, which means the 

assumption (2) is satisfied. The PDFs of displacements and 

velocities responses of systems obtained from the two 

methods are almost the same as expected. Then, we adjust 

the value of 𝜔1 to calculate the PDFs of displacements and 

velocities responses for each system. As 𝜔1 changes, the 

assumption (2) is no longer satisfied. Therefore, the 

analytical solution may be not accurate anymore, so we need 

to know the deviation between the analytical solution and the 

numerical solution. Figure 3 and Figure 4 show the 

comparisons of the PDFs of the displacement and velocity 

responses of the systems with different 𝜔1 by using the two 

methods. 

As we can see from Figure 3(a), 𝜔 = 12,
𝑆

𝜁∙𝜔
= 1.33, the 

PDFs of System 1 coincide with those of System 2. In Figure 

3(b), 𝜔 = 8,
𝑆

𝜁∙𝜔
= 2, the PDFs of the displacement of 

velocity of System 1 calculated analytically still agree well 

with those from numerical simulations. In the contrast, the 

fluctuations in System 2 are more obvious; in Figure 3(c), 

when 𝜔 = 4,
𝑆

𝜁∙𝜔
= 4, the PDFs of the System 1 still make 

good agreement, but there is a large discrepancy between the 

PDFs of System 2; in the Figure 3(d), 𝜔 = 1, the PDFs of 

both systems exhibit large derivations; in this case, 
𝑆

𝜁∙𝜔
=

16 ≫ 1, that means the Eq.(9) is not satisfied anymore, so 

the exact analytical solution presents a great difference with 

the numerical solution . On the contrary, as we can see in 

Figure 4, even when 𝜔1 becomes much larger than 𝜔2, 
𝑆

𝜁∙𝜔
<

1, the PDFs of both methods agree well. 

 

(a)𝜔1 = 24𝜋,𝜔2 = 2𝜋,𝜔 = 12 

 

(b) 𝜔1 = 16𝜋,𝜔2 = 2𝜋, 𝜔 = 8 

 

(c) 𝜔1 = 8𝜋,𝜔2 = 2𝜋,𝜔 = 4 

 

 (d) 𝜔1 = 2𝜋,𝜔2 = 2𝜋, 𝜔 = 1 
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Figure 3. PDFs of the responses of the systems (𝜔 = 12,8,4,1). 

 

(a)𝜔1 = 64𝜋,𝜔2 = 2𝜋,𝜔 = 32 

 

 (b) 𝜔1 = 128𝜋, 𝜔2 = 2𝜋, 𝜔 = 64 

 

(c) 𝜔1 = 256𝜋,𝜔2 = 2𝜋,𝜔 = 128 

 

 (d) 𝜔1 = 512𝜋, 𝜔2 = 2𝜋,𝜔 = 256 

Figure 4. PDFs of the responses of the systems (𝜔 =
32,64,128,256) 

3.3 Stochastic response analysis 

In the study by Jing and Young [30], a parameter 𝑘12 is 

introduced to represent the square root of the stiffness ratio 

of each system and it can be derived as: 

𝑘12 = √
𝑘1
𝑘2
=
𝜔1
𝜔2

= 𝜔 =
𝑆

𝜁
∙
𝐷𝑉2
𝐷𝑉1

= √
𝑆

𝜁 ∙ 𝜔
∙
𝐷𝑋2
𝐷𝑋1

 (16) 

where 𝐷𝑉𝑖 = 𝜎𝑣𝑖
2 =

𝜋𝑆𝑖

2𝜁𝑖𝜔𝑖
 (in the numerical solution, we use 

one-sided PSD random excitations instead of the white noise 

Gaussian processes, so we have 𝐷𝑉𝑖 = 𝜎𝑣𝑖
2 =

𝜋𝑆𝑖

8𝜁𝑖𝜔𝑖
) represent 

the mean square velocity responses of the corresponding 

linear systems, and 𝐷𝑋𝑖 = 𝜎𝑥𝑖
2 =

𝜋𝑆𝑖

2𝜁𝑖𝜔𝑖
3 (in the numerical 

solution, 𝐷𝑋𝑖 = 𝜎𝑥𝑖
2 =

𝜋𝑆𝑖

8𝜁𝑖𝜔𝑖
3) represent the mean square 

displacement responses. According to the Eq.(16), we can 

define: 

𝐶𝐷𝑉 =
𝐷𝑉1
𝐷𝑉2

=
𝑆

𝜁 ∙ 𝜔
  ;   𝐶𝐷𝑋 =

𝐷𝑋1
𝐷𝑋2

=
𝑆

𝜁 ∙ 𝜔
3 (17) 

which represent the mean square responses ratio of the 

corresponding linear systems. It can be seen that, only when 

the assumption (2) is satisfied, 𝑘12 = 𝜔 = √
𝐷𝑋2

𝐷𝑋1
= √

1

𝐶𝐷𝑋
=

𝜎𝑥2

𝜎𝑥1
 which is the same as which given by Jing and Young [30]. 

It's worth noting that,  𝐶𝐷𝑉 represents the satisfaction of the 

assumption 2. 

It is noted that, according to the Eq.(12), the velocity 

distributions of 𝑣1 and 𝑣2 are decoupled and Gaussian, so the 

mean square velocity responses of the vibro-impact systems 

are equal to those of the linear systems. But the displacement 

distributions of 𝑥1 and 𝑥2 are coupled due to the impact 

interactions, which is governed by 𝑔(𝑥1, 𝑥2). And the mean 

square displacement responses of the vibro-impact system 

can be obtained as 

𝐷𝑥𝑖
′ = ∫ 𝑥𝑖

2 ∙ 𝑝(𝑥𝑖)𝑑𝑥𝑖   ,   𝑖 = 1,2

∞

−∞

 (18) 

 

Figure 5. Mean square responses with different clearance: (a) 

displacement and (b) velocity responses of the System 1; (c) 

displacement and (d) velocity responses of the System 2. 

It is found that the mean square responses calculated by 

the two methods are significantly different, which can be 

observed from Figure 5. Figure 5 (a) and (c) show the 

differences of the mean square displacement responses. As 

we can see, when 𝜔 = 1, 𝐶𝐷𝑉 = 16 ≫1, the mean square 
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displacement responses have great differences: the analysis 

results of the vibro-impact systems are greater than the 

numerical results for System 1; and the analysis results of the 

linear systems (the black square line) are the greatest. In the 

contrast, the numerical results are the greatest for System 2. 

This phenomenon is due to the strong impact interaction, 

which reduces the mean square displacement responses of 

System 1 while increases the mean square responses of 

System 2. As 𝜔 increases and 𝐶𝐷𝑉 decreases, the stiffness of 

System 1 becomes larger, these differences vanish quickly: 

when 𝜔 ≥ 8, the analysis results and the numerical results 

are almost the same; but for System 2, the analysis results of 

corresponding linear systems are always larger than the 

results of vibro-impact systems.  

Figure 5 (b) and (d) show the differences of the mean 

square velocity responses. In the theoretical analysis, the 

velocity distributions of 𝑣1 and 𝑣2 are decoupled and 

Gaussian. However, in the numerical analysis, though the 

velocity distributions of 𝑣1 and 𝑣2 are still Gaussian, the 

mean square responses differ with the results from 

theoretical analysis. Similar to the mean square displacement 

responses, when 𝜔 = 1, 𝐶𝐷𝑉 = 16, the analytical results are 

greater for System 1, while the numerical results are greater 

for System 2. As 𝜔 increases and 𝐶𝐷𝑉 decreases, these 

differences vanish quickly: for System 1, when 𝜔 ≥
8, 𝐶𝐷𝑉 ≤ 2, the analysis results and the numerical results are 

almost the same; but for System 2, the numerical results 

approximate to the analysis results until 𝜔 ≥ 12, 𝐶𝐷𝑉 ≤
1.33. The results suggest that the impact interaction does not 

only influence the displacement distributions but also the 

velocity distributions.  

The influence of clearance 𝑑 on the system response is 

also worth attention. The mean square responses of the 

systems with different clearance are also shown in Figure 5. 

From Figure 5 (a) and (b) we can find that, changing 

clearance will have little impact on the mean square 

responses of the system 1; from Figure 5(c) and (d) we can 

find that, changing clearance will have some influences on 

the mean square responses of the system 2: the mean square 

displacement responses of System 2 with a clearance 𝑑 =
0.1  are slightly larger than which with a clearance 𝑑 = 0.05 

and 𝑑 = 0.01; on the contrary, the mean square velocity 

responses of System 2 with a clearance 𝑑 = 0.1 are slightly 

smaller than which with a clearance 𝑑 = 0.05 and 𝑑 = 0.01. 

The mean square responses ratio calculated by the two 

methods also show great differences, which can be observed 

from Figure 6. As we can see from Figure 6, the relationship 

between the mean square responses ratio of the linear 

systems and 𝜔 is linear in log-log scale. The mean square 

responses ratio of the vibro-impact systems calculated by the 

analysis method is in a good agreement with that of the linear 

systems. However, for the mean displacement square 

responses ratio, when 𝜔 = 1, 𝐶𝐷𝑉 = 16, the numerical 

results of the vibro-impact systems are much smaller than the 

analysis results; for the mean velocity square responses ratio, 

the numerical results are smaller than the analysis results 

when 𝜔 ≤ 8; especially when 𝜔 = 1, 𝐶𝐷𝑉 = 16, the 

numerical results are much smaller than the analysis results. 

These results suggest that the relationship between the mean 

square responses ratio of the vibro-impact systems and 𝜔 is 

nonlinear in log-log scale. Changing clearance will have 

little impact on the mean square responses ratio of the 

systems. 

 

Figure 6. Mean square responses ratio with different clearance (log 

log-scale): (a) mean displacement square responses ratio mean; (b) 

velocity square responses ratio. 

The contact ratio is defined as the summation of the time 

intervals while contact is maintained divided by the total 

time. The variations of the contact ratio with 𝜔 are shown in 

Figure 7. As we can see in Figure 7, when 𝜔 is constant, the 

smaller the clearance 𝑑, the greater the contact ratio. When 

𝑑 = 0.01, the contact ratio increases rapidly with increasing 

of the clearance at first, then it increases smoothly and 

become stable when 𝜔 > 16; in contrast, when 𝑑 = 0.1, the 

contact ratio decreases rapidly to the minimum when 𝜔 = 8, 

then it increases smoothly and becomes stable; when 𝑑 =
0.05, the contact ratio have a jump value while 𝜔 = 4, 

besides which the rest remains steady. 

The maximum impact force response of the systems is 

also worth attention. Figure 8 shows the variations of the 

maximum impact force with 𝜔. As we can see in Figure 8, 

when 𝜔 is constant, the smaller the clearance 𝑑, the greater 

the maximum impact force. When 𝜔 = 1, the maximum 

impact force reaches to the peak value; with the increase of 

𝜔, the maximum impact force decreases rapidly at first, then 

it decreases smoothly and becomes stable. 

 
Figure 7. The variations of the contact ratio with 𝜔. 

 
Figure 8. The variations of the maximum impact force with 𝜔. 
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4. Conclusions 

In this paper, the analytical solution of the vibro-impact 

systems under random excitation is obtained using the 

classical FPK method under the assumptions of (1) 

(displacements and velocities are statistically independent) 

and (2) (the exciting strength ratio is equal to the damping 

and frequency ratio of two single-degree-of-freedom 

vibration systems). The Hertz contact model is used to 

describe the contact between two single-degree-of-freedom 

vibration systems. The numerical solutions of the vibro-

impact system are obtained by the IDFT and the Runge-

Kutta method. 

Through the comparisons of the PDFs of the 

displacement and velocity responses of the systems 

calculated by using the two methods, the deviation between 

the analytical solution and the numerical solution is studied. 

The mean square responses are also calculated. And the 

mean square responses ratio of the systems is introduced to 

represents the satisfaction of the assumption (2): when 

𝐶𝐷𝑉 = 1, the assumption (2) is satisfied. When the frequency 

ratio 𝜔 ≥ 12, the mean square responses ratio of the 

corresponding linear systems 𝐶𝐷𝑉 ≤ 1.33, the PDFs 

calculated by the two methods are in good agreement; 𝐶𝐷𝑉  

increases as 𝜔 decreases, and the differences between the 

PDFs from the two methods become significant. The 

displacement distribution and velocity distribution are 

significantly affected by the impact interaction: when the 

impact interaction is strong, the mean square responses show 

a great difference. It is found that, the relationship between 

the mean square responses ratio of the linear systems and 𝜔 

is linear in log-log scale; while that of the vibro-impact 

systems is nonlinear. 

Finally, the influence of clearance on the responses of the 

systems is studied. Changing clearance will have little 

impact on the mean square responses of the systems. When 

𝜔 is constant, the smaller the clearance 𝑑, the greater the 

contact ratio and the maximum impact force. 
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